
Advanced image 
synthesis



Which color in each pixel?



Rasterization pipeline
▪ For each triangle
▪ Project triangle to image plane
▪ For each pixel

▪ Check pixel in triangle
▪ Resolve visibility with z-buffer



Modern graphics pipeline



Rasterization advantages

▪Modern scenes more complicated than images
▪1920x1080 frame (1080p)
▪64-bit color and 32-bit depth
▪24 Mb memory

▪Rasterization can stream over triangles 
▪One triangle at a time
▪Parallelism
▪Memory optimization



Rasterization limitations

▪Restricted to scan-convertible primitives (triangles)

▪No unified handling of
▪Shadows
▪Reflection
▪Transparency

▪Potential problem of overdraw
▪Depth complexity 
▪Each pixel touched many times



Rasterization VS ray-casting
▪ For each triangle
▪ Project triangle to image plane
▪ For each pixel

▪ Check pixel in triangle
▪ Resolve visibility with z-buffer



Rasterization VS ray-casting
▪ For each pixel
▪ Compute pixel ray
▪ For each triangle

▪ Check ray-triangle intersection
▪ Get closest intersection

▪ For each triangle
▪ Project triangle to image plane
▪ For each pixel

▪ Check pixel in triangle
▪ Resolve visibility with z-buffer



Rasterization VS ray-casting
▪ For each pixel
▪ Compute pixel ray
▪ For each triangle

▪ Check ray-triangle intersection
▪ Get closest intersection

▪ For each triangle
▪ Project triangle to image plane
▪ For each pixel

▪ Check pixel in triangle
▪ Resolve visibility with z-buffer

Triangle-centric Ray-centric

Images from: http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/lecture-notes/MIT6_837F12_Lec21.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/lecture-notes/MIT6_837F12_Lec21.pdf


Ray-casting advantages

▪Generality 
▪Not limited to triangles: can render anything
▪Polygons, implicit, b-rep, etc… 

▪Shadows, reflection, refraction
▪Uniform handling
▪Directly obtained via recursion

▪Base for many advanced algorithms
▪Path tracing, photon mapping, etc…



Ray-casting limitations

▪Can be hard to implement
▪Entire scene in memory

▪Can be slow with large scenes
▪But…

[T. Whitted, 1980]

• VAX 11/780 (1979): 74 min
• PC (2006): 6 sec
• GPU (2009): 30 fps
• GPU (2014): > 60 fps



Ray-casting basics
▪ For each pixel
▪ Compute pixel ray
▪ For each object

▪ Check ray-object intersection
▪ Get closest intersection

camera Image plane objects



Ray-casting basics
▪ For each pixel
▪ Compute pixel ray
▪ For each object

▪ Check ray-object intersection
▪ Get closest intersection

camera Image plane objects



Ray-casting basics
▪ For each pixel
▪ Compute pixel ray
▪ For each object

▪ Check ray-object intersection
▪ Get closest intersection

camera Image plane objects



Ray-casting basics
▪ For each pixel
▪ Compute pixel ray
▪ For each object

▪ Check ray-object intersection
▪ Get closest intersection

camera Image plane objects

And then?

?

?



Ray-casting basics
▪ For each pixel
▪ Compute pixel ray
▪ For each object

▪ Check ray-object intersection
▪ Get closest intersection

camera Image plane objects

Light(s)

And then?
Shade!

• Shadow rays
• Reflections
• Refractions



Ray-casting basics
▪ For each pixel
▪ Compute pixel ray
▪ For each object

▪ Check ray-object intersection
▪ Get closest intersection

camera Image plane objects

Light(s)

And then?
Shade!

• Shadow rays
• Reflections
• Refractions



Ray-casting basics
▪ For each pixel
▪ Compute pixel ray
▪ For each object

▪ Check ray-object intersection
▪ Get closest intersection

camera Image plane objects

Light(s)

And then?
Shade!

• Shadow rays
• Reflections
• Refractions



Ray-casting basics
▪ For each pixel
▪ Compute pixel ray
▪ For each object

▪ Check ray-object intersection
▪ Get closest intersection

camera Image plane objects

Light(s)

And then?
Shade!

• Shadow rays
• Reflections
• Refractions



Ray-casting vs ray-tracing

camera Image plane objects

• Shadow rays
• Reflections
• RefractionsEye rays only

= Ray casting



Ray-casting vs ray-tracing

camera Image plane objects

• Shadow rays
• Reflections
• RefractionsEye rays only

= Ray casting

Secondary rays
= Ray tracing



Ray-casting vs ray-tracing



Ray-casting: summary

▪For each pixel
▪ Compute eye ray
▪ For each object
▪ Check ray-object intersection
▪ Get closest intersection
▪ Shade depending on light and normal vector

Finding intersection point and normal is the central part of ray-casting!



▪ Ray representation: parametric line
▪ Origin O (3D point)
▪ Direction D (normalized vector)
▪ P(t) = O + t*D

Eye ray and camera

O

D

P(t)

Goal: find smallest t>0 such that P(t) lies on a surface



▪ Pinhole camera (or camera obscura)
▪ Small aperture (perfect image if pinhole infinitely small)
▪ Inverted image
▪ Pure geometric optics

Eye ray and camera

http://en.wikipedia.org/wiki/Pinhole_camera

A 19th-century artist using a camera
obscura to outline his subject

http://en.wikipedia.org/wiki/Pinhole_camera


▪ Pinhole camera (or camera obscura)
▪ Small aperture (perfect image if pinhole infinitely small)
▪ Inverted image
▪ Pure geometric optics

Eye ray and camera

Wellcome Library, London. License: CCBY-NC



▪ Simplified Pinhole camera
▪ Eye position: e
▪ Orthogonal basis: u,v,w (right, up, view) directions
▪ Field of view: alpha
▪ Aspect ratio: w/h

Eye ray and camera

http://paulbourke.net/papers/HET409_2003/frustum.html



Eye ray and camera

http://paulbourke.net/papers/HET409_2003/frustum.html

X

Y

▪ Simplified Pinhole camera
▪ Eye position: e
▪ Orthogonal basis: u,v,w (right, up, view) directions
▪ Field of view: alpha
▪ Aspect ratio: w/h

▪ Image coordinates
▪ Normalized image coords
▪ X in [-1,1]
▪ Y in [-1,1]



Ray generation

u

w

PImage plane 
x in [-1,1]

e

α



Ray generation

u

w

PImage plane 
x in [-1,1]

e

α

r
Goal: find r



Ray generation

u

w

PImage plane 
x in [-1,1]

e

α

=1

D
r

Goal: find r
D = ?



Ray generation

u

w

PImage plane 
x in [-1,1]

e

α

=1

D
r

Goal: find r



Ray generation

u

w

PImage plane 
x in [-1,1]

e

α

=1

D
r

Goal: find r

r = (x*u,D*w), normalized

P(t) = e + t*r



▪ In 3D

Eye ray and camera

http://paulbourke.net/papers/HET409_2003/frustum.html

r = (x*u,aspect*y*v,D*w), normalized

P(t) = e + t*r



▪ Persective

Eye ray and camera

r = (x*u,aspect*y*v,D*w), normalized
P(t) = e + t*r

camera Image plane



▪ Persective

Eye ray and camera

r = (x*u,aspect*y*v,D*w), normalized
P(t) = e + t*r

camera Image plane camera Image plane

▪ Orthographic



▪ Persective

Eye ray and camera

r = (x*u,aspect*y*v,D*w), normalized
P(t) = e + t*r

camera Image plane camera Image plane

▪ Orthographic

o = e + x*size*u + y*size*v
P(t) = o + t*w



Ray-casting: summary

▪For each pixel
▪ Compute eye ray
▪ For each object
▪ Check ray-object intersection
▪ Get closest intersection
▪ Shade depending on light and normal vector

Finding intersection point and normal is the central part of ray-casting!

OK!



Ray-casting: summary

▪For each pixel
▪ Compute eye ray
▪ For each object
▪ Check ray-object intersection
▪ Get closest intersection
▪ Shade depending on light and normal vector

Finding intersection point and normal is the central part of ray-casting!

?



Ray-plane intersection

ro

rd

P(t)

▪ Parametric ray equation:



Ray-plane intersection

ro

rd

▪ Parametric ray equation:

▪ Implicit plane equation:

P(t)



Ray-plane intersection

ro

rd

▪ Parametric ray equation:

▪ Implicit plane equation:

P(t)
n



Ray-plane intersection

ro

rd

▪ Parametric ray equation:

▪ Implicit plane equation:

P(t)
n



Ray-plane intersection

ro

rd

▪ Parametric ray equation:

▪ Implicit plane equation:

P(t)

n



Ray-plane intersection

ro

rd

▪ Parametric ray equation:

▪ Implicit plane equation:

▪ Signed distance to plane!
▪ Intersection:

P(t)
n



Ray-plane intersection

ro

rd

▪ Parametric ray equation:

▪ Implicit plane equation:

▪ Signed distance to plane!
▪ Intersection:

▪ Normal: constant (n)

P(t)
n



Ray-sphere intersection

ro

rd

▪ Parametric ray equation:

▪ Implicit sphere equation:

P(t)

O



Ray-sphere intersection

ro

rd

▪ Parametric ray equation:

▪ Implicit sphere equation:

P(t)

O

▪  



Ray-sphere intersection

ro

rd

▪ Parametric ray equation:

▪ Implicit sphere equation:

P(t)

O

▪  

▪  



Ray-sphere intersection

ro

rd

▪ Parametric ray equation:

▪ Implicit sphere equation:

P(t)

O

▪  

▪  

▪  



Ray-sphere intersection

ro

rd

▪ Parametric ray equation:

▪ Implicit sphere equation:

P(t)

O

▪  

▪  

▪  

▪  



Ray-sphere intersection

ro

rd

▪ Parametric ray equation:

▪ Implicit sphere equation:

P(t)

O

▪  

▪  

▪  

▪  



Ray-triangle intersection

ro

rd

▪ Ray-plane intersection

▪ Then test each edge…

P(t)



Ray-triangle intersection

ro

rd

▪ Ray-plane intersection

▪ Then test each edge…

▪ Better: parametric solution [Moller & Trumbore 97]
▪  
▪  

▪   

▪ See 
http://www.cs.virginia.edu/~gfx/Courses/2003/ImageSynthesis/papers/Acceleration/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf

P(t)

http://www.cs.virginia.edu/~gfx/Courses/2003/ImageSynthesis/papers/Acceleration/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf


Other intersections

ro

rd

▪ Cone, cylinder, elipsoid
▪ Similar to sphere

▪ Box
▪ 3 front facing planes

▪ Convex polygon
▪ Similar to triangles

▪ Concav polygon
▪ More complex point-in-polygon test

P(t)



Ray-casting: summary
▪For each pixel
▪ Compute eye ray
▪ For each object
▪ Check ray-object intersection
▪ Get closest intersection
▪ Shade depending on light and normal vector

OK



Ray-casting: summary
▪For each pixel
▪ Compute eye ray
▪ For each object
▪ Check ray-object intersection
▪ Get closest intersection
▪ Shade depending on light and normal vector

What if intersection cannot be computed analytically? 



References
▪ MIT:

▪ http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall
-2012/lecture-notes/

▪ Standford:
▪ http://candela.stanford.edu/cs348b-14/doku.php

▪ Siggraph:
▪ http://blog.selfshadow.com/publications/s2014-shading-course/
▪ http://blog.selfshadow.com/publications/s2013-shading-course/

▪ Image synthesis & OpenGL:
▪ http://romain.vergne.free.fr/blog/?page_id=97

▪ Path tracing and global illum:
▪ http://www.graphics.stanford.edu/courses/cs348b-01/course29.hanrahan.pdf
▪ http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html

▪ GLSL / Shadertoy:
▪ https://www.opengl.org/documentation/glsl/
▪ https://www.shadertoy.com/
▪ http://www.iquilezles.org/

▪ http://fileadmin.cs.lth.se/cs/Education/EDAN30/lectures/L2-rt.pdf

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/lecture-notes/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/lecture-notes/
http://candela.stanford.edu/cs348b-14/doku.php
http://blog.selfshadow.com/publications/s2014-shading-course/
http://blog.selfshadow.com/publications/s2013-shading-course/
http://romain.vergne.free.fr/blog/?page_id=97
http://www.graphics.stanford.edu/courses/cs348b-01/course29.hanrahan.pdf
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html
https://www.opengl.org/documentation/glsl/
https://www.shadertoy.com/
http://www.iquilezles.org/
http://fileadmin.cs.lth.se/cs/Education/EDAN30/lectures/L2-rt.pdf

